in linkedin.com/in/ajayrpai </>

Education

University of Washington, Seattle, WA

B.S. in Computer Science

Skills

Programming Languages: Java, C#, Python, C++, C, JavaScript, Bash, SQL

Frameworks & Tools: Git, Unity, Linux, Android, React, NodeJS, Fusion360, Cloud Infrastructure

Experience

Software Engineer Intern | Autodesk

- Worked on Synthesis, an Autodesk Technology for open-source 3D virtual robotics simulation
- Converted Fusion360 CAD models into dynamic physical bodies for collision detection and control of vehicles
- Developed a C# API for 3rd party developers to create custom functionality in the simulation environment
- Used Unity for front-end and Virtual Reality (VR) development to improve user experience
- Created a cross-platform C# library to interact with the system's default file browser
- Built a custom Mac OSX installer to package and set up the simulation environment
- Participated in Agile Development Methodology using JIRA

President & Vice President | FIRST Robotics Team 2976

- Coordinated and directed a team of 60 members
- Responsible for mechanical design, manufacturing, electronics and debugging/reviewing code
- 2018 Houston World Champions

Projects

NEAT AI C++				
 Wrote my own implementation of the NeuroEvolution of Augmenting Topologies (NEAT) algorithm Uses a genetic algorithm to optimize the structure as well as performance of graph neural networks On average 150 networks can train for the XOR problem in 30 iterations 				
		 Drone Delivery Autopilot Python Parsed and grouped lidar data from a drone simulation and used ML to identify objects Used A* search for both delivery pathing and object avoidance Achieved a 98% delivery success rate and 2% crash rate 	2021	
				 Ecosystem Simulation JavaScript Uses a genetic algorithm to simulate natural selection between multiple species Uses a Quadtree for collision/range detection to decrease O complexity from n² to nlog(n) Predator-Prey Simulation JavaScript A cellular automaton that models population fluctuations in a predator-prey relationship Maze Visualization Java Uses recursive backtracking to procedurally generate solvable mazes of any size Achievements
Oracle Cloud Infrastructure Foundations Certified Associate	2021			
FIRST Robotics Competition (FRC) Houston World Division Finalists	2019			
 FIRST Robotics Competition (FRC) Houston World Champions 	2018			

Graduation Date: June 2022 Cumulative GPA: 3.80

2018 – 2019 | 2020 – 2021

2015 - 2019